Kate Carroll, PhD, The Scripps Research Institute

Kate Carroll, PhD, The Scripps Research Institute
Kate Carroll, PhD

The Carroll lab studies the molecular mechanisms that underlie redox-regulation of protein function in order to better understand how redox systems modulate complex physiological processes in normal and disease states.

Oxidative thiol modifications have emerged as a central mechanism for dynamic post-translational regulation of all major protein classes and correlate with many disease states. The Carroll lab focuses on the development and application of chemoselective probes as tools to proile these modiications in cell-based systems and to identify biomarkers of oxidative stress.



  1. Seo YH, Carroll KS. Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies. Proc. Natl. Acad. Sci. USA 2009; 106:16163â??16168
  2. Leonard, S. E., Garcia, F. J., Goodsell, D. S., and Carroll, K. S. (2011) Redox-based probes for protein tyrosine phosphatases, Angew Chem Int Ed Engl 50, 4423-4427.
  3. Seo YH, Carroll KS. Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone. Angew Chem Int Ed Engl. 2011 Feb 7;50(6):1342-5. doi: 10.1002/anie.201007175.
  4. Truong, T. H., and Carroll, K.S. (2012) Bioorthogonal Chemical Reporters for Analyzing Protein Sulfenylation in Cells, Curr Protoc Chem Biol 4, 101-122.
  5. Gupta, V.; Carroll, K. S. Sulfenic Acid Chemistry, Detection and Cellular Lifetime. Biochimica et Biophysica Acta - General Subjects 2014, 1840, 847-875
  6. Lo Conte M., Lin J., Wilson M.A., Carroll K.S. A Chemical Approach for the Detection of Protein Sulfinylation. ACS Chem. Biol. 2015.
  7. Garcia FJ, Carroll KS. An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag. Mol Biosyst. 2016 Jan 13.
  8. Gupta, V. and Carroll, K. S.; Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles