Andrew D. Ellington, PhD, University of Texas at Austin

Andrew D. Ellington, PhD

The Ellington lab is attempting to develop novel synthetic organisms based on altering the translation apparatus and developing modular nucleic acid software. Translation engineering centers on the introduction of novel amino acids into proteins that have the capability to base-pair, and is being pursued using a variety of techniques, including directed evolution, computational design, and high-throughput synthesis. In parallel, DNA circuits based on strand exchange reactions and capable of executing embedded algorithms are being developed, using tools such as aptamers and DNA nanotechnology. The first application of these circuits will be in point-of-care diagnostics, but eventually these circuits should form the basis of a new, modular cellular operating system. In order to enhance both engineering translation and installing DNA circuitry into cells, we have developed tools to directly synthesize operons, enable facile horizontal transfer, and edit genomes, and are interested in how such tools can be used to engineer cellular consortiums, including biofilms.

The Investigator's Annexe Part of The Investigator's Annexe program.



  1. Ellefson JW, Meyer AJ, Hughes RA, Cannon JR, Brodbelt JS, Ellington AD. Directed evolution of genetic parts and circuits by compartmentalized partnered replication. Nat Biotechnol. 2014 Jan;32(1):97-101. doi: 10.1038/nbt.2714.