Anti-Rhamnogalacturonan I [CCRC-M22 ] Antibody (supernatant)

This mouse IgG1 monoclonal antibody was generated against De-arabinosylated rhamnogalacturonan I/MeBSA complex and recognizes sycamore maple, arabidopsis, lupin galactan, gum ghatti rhamnogalacturonan I (RG1).

Highlights:

  • Reacts with sycamore maple, arabidopsis, lupin galactan, gum ghatti RG1
  • Suitable for ELISA applications

Rhamnogalacturonans (RGs) are a family of related cell wall pectic polysaccharides that contain a repeating backbone of a-D-GalpA-(1,2)-a-L-Rhap-(1).

From the laboratory of Michael G. Hahn, PhD, University of Georgia.

Catalog Number Product DataSheet Size AVAILABILITY Price Qty
EGA154
Anti-Rhamnogalacturonan I [CCRC-M22 ] Antibody (supernatant)
5mL (supernatant) In stock
Regular Price:$310.00
On Sale:
Specifications

Product Type: Antibody
Antigen: Rhamnogalacturonan I, Arabinogalactans from Sycamore maple (Acer pseudoplatanus)
Accession ID: CCRC M22
Isotype: IgG1
Clonality: Monoclonal
Clone Name: 5G8.B1.H4.D3
Reactivity: Sycamore maple, Arabidopsis, lupin galactan, gum ghatti
Immunogen: De-arabinosylated rhamnogalacturonan I/MeBSA complex
Species Immunized: Mouse
Buffer: Cell culture supernatant
Tested Applications: ELISA
Storage: <1 month at 4C, >1 month at -80C
Shipped: Cold Packs

Documentation

PDF CCRC-M22 Cross Reactivity Map

Notes:

These monoclonal antibodies were developed under the sponsorship of the US National Science Foundation, through award number DBI-0421683. Their use in biomass characterization, study of biomass deconstruction and quantitation was developed under the sponsorship of the US Department of Energy through awards DE-PS02-06ER64304 and DE-AC05-00OR22725 (BioEenergy Science Center).

Provider
From the laboratory of Michael G. Hahn, PhD, University of Georgia.
References
  1. Robin E. Young, Heather E. McFarlane, Michael G. Hahn, Tamara L. Western, George W. Haughn and A. Lacey Samuels. 2008. Analysis of the Golgi Apparatus in Arabidopsis Seed Coat Cells during Polarized Secretion of Pectin-Rich Mucilage. The Plant Cell June 2008 vol. 20 no. 6 1623-1638 .
  2. DeMartini, JD, Pattathil, S, Avci, U, Szekalski, K, Mazumder, K, Hahn, M.G., Wyman, CE: Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ. Sci., 2011, 4, 4332-4339.
  3. Pattathil S, Avci U, Miller JS, Hahn MG. 2012. Immunological approaches to plant cell wall and biomass characterization: Glycome profiling. In: Himmel M (ed) Biomass Conversion: Methods and Protocols. Springer Science + Business Media, LLC, New York, NY, pp 61-72.
  4. A.P. de Souza, D.C.C. Leite, S. Pattahil, M.G. Hahn, M.S. Buckeridge. 2013. Composition and structure of sugarcane cell wall polysaccharides: Implications for second generation bioethanol production. Bioenergy Research 6: 564-579.
  5. J. Puhlmann, E. Bucheli, M. J. Swain, N. Dunning, P. Albersheim, A. G. Darvill, and M. G. Hahn. (1994) Generation of monoclonal antibodies against plant cell wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal alpha-(1,2)-linked fucosyl-containing epitope. Plant Physiol. 104:699-710.
  6. G. Freshour, R. P. Clay, M. S. Fuller, P. Albersheim, A. G. Darvill, and M. G. Hahn. (1996) Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol. 110:1413-1429.
  7. G. Freshour, C. P. Bonin, W.-D. Reiter, P. Albersheim, A. G. Darvill, and M. G. Hahn. (2003) Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis thaliana. Plant Physiol. 131:1602-1612.
  8. Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O'Shea B, Rossi R, Leoff C, Freshour G, Narra R, O'Neil M, York WS, Hahn MG. (2010) A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiol. 153:514-525.
  9. Pattathil S, Avci U, Miller JS, Hahn MG. 2012. Immunological approaches to plant cell wall and biomass characterization: Glycome profiling. In: Himmel M (ed) Biomass Conversion: Methods and Protocols. Springer Science + Business Media, LLC, New York, NY, pp 61-72.
  10. Pattathil S, Avci U, Baldwin D, et al. 2010. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiology 153, 514-525.
  11. Pattathil S, Hahn MG, Dale BE, Chundawat SP. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass. J Exp Bot. 2015 Jul;66(14):4279-94.

If you publish research with this product, please let us know so we can cite your paper.

Loading...