DCP-Bio1 is dimedone based and contains a biotin tag making it compatible with several techniques and forms of analysis.


  • Contains cleavable biotin tag
  • Stable, reproducible binding to cysteine sulfenic acid (-SOH) at pH 6.0 - 8.0
  • Great for In vitro and In vivo applications
  • Compatible with WB, ELISA, and Affinity Isolation

Redox-sensitive cysteine residues in proteins may serve as important components of oxidative signaling or sensors of oxidative stress. Cysteine sulfenic acid modification is an emerging area of interest for those studying biological signal transduction within the cell.

Cysteine sulfenic acid formation in proteins results from the oxidative modification of susceptible cysteine residues by mild oxidizing agents such as hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. These sulfenic acid modified proteins can be identified by their ability to form adducts with dimedone, but this reagent provides no spectral or affinity tag to such adduct to allow for later analysis. DCP-Bio1 can be used to effectively detect the formation of cysteine sulfenic acid in the redox regulation of proteins, and with the presence of a biotin label, DCP-Bio1 is compatible with several techniques and forms of analysis post-labeling.

From the laboratories of Leslie B. Poole, PhD and S. Bruce King, PhD, Wake Forest School of Medicine.

Catalog Number Product DataSheet Size AVAILABILITY Price Qty
DCP-Bio1 - 2mg
2mg Unavailable through Kerafast.
Available from Xoder Here.
See Price in Shopping Cart

Product Type: Small Molecule
Name: DCP-Bio1; 3-(2,4-dioxocyclohexyl)propyl 5-((3aR,6S,6aS)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-6-yl)pentanoate
Chemical Formula: C19H28N2O5S
Source: synthetic
Molecular Weight: 396.5 g/mol
Format: solid
Purity: >98% pure, see Poole, et al., 2007
Solubility: At least 500 mM in DMSO, at least 5 mg/ml in acetonitrile
Stability: stable > 6 months at -20 degC
Spectral Information: No visible absorbance; NMR data, etc. in Poole et al., 2007
Storage: room temperature for short term, -20 degC for long term

From the laboratories of Leslie B. Poole, PhD and S. Bruce King, PhD, Wake Forest School of Medicine.

Stock solution in DMSO can be added to cell lysis buffer, preferrably keeping final [DMSO] < 2% for labeling proteins. Can be dissolved in acetonitrile to prepare aliquots and redry.

  1. Poole, L.B., Klomsiri, C., Knaggs, S.A., Furdui, C.M., Nelson, K.J., Thomas, M.J., Fetrow, J.S., Daniel, L.W. & King, S.B. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjug Chem 18, 2004-17 (2007). PMC2526167
  2. Klomsiri, C., Nelson, K.J., Bechtold, E., Soito, L., Johnson, L.C., Lowther, W.T., Ryu, S.E., King, S.B., Furdui, C.M. & Poole, L.B. Use of dimedone-based chemical probes for sulfenic acid detection: evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods Enzymol 473, 77-94 (2010)
  3. Nelson, K.J., Klomsiri, C., Codreanu, S.G., Soito, L., Liebler, D.C., Rogers, L.C., Daniel, L.W. & Poole, L.B. Use of dimedone-based chemical probes for sulfenic acid detection; methods to visualize and identify labeled proteins. Methods Enzymol 473, 95-115 (2010).

DCP-Bio1 Application References

  1. Oshikawa, J., Urao, N., Kim, H.W., Kaplan, N., Razvi, M., McKinney, R., Poole, L.B., Fukai, T. & Ushio-Fukai, M. Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS One 5, e10189 (2010). PMC2858087
  2. Kaplan, N., Urao, N., Furuta, E., Kim, S.J., Razvi, M., Nakamura, Y., McKinney, R.D., Poole, L.B., Fukai, T. & Ushio-Fukai, M. Localized cysteine sulfenic acid formation by vascular endothelial growth factor:role in endothelial cell migration and angiogenesis. Free Radic Res 45, 1124-35 (2011).
  3. Wani, R., Qian, J., Yin, L., Bechtold, E., King, S.B., Poole, L.B., Paek, E., Tsang, A.W. & Furdui, C.M. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc Natl Acad Sci U S A 108, 10550-5 (2011).
  4. Oger, E., et al. (2012). "Sulfenylated proteins in the Medicago truncatula-Sinorhizobium meliloti symbiosis." J Proteomics 75(13): 4102-4113.
  5. Wang L, Zhang L, Niu Y, Sitia R, Wang CC. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1? to promote oxidative protein folding. Antioxid Redox Signal. 2014 Feb 1;20(4):545-56.
  6. Hristova M, Habibovic A, Veith C, Janssen-Heininger YM, Dixon AE, Geiszt M, van der Vliet A. Airway epithelial dual oxidase 1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses. J Allergy Clin Immunol. 2015 Nov 17. pii: S0091-6749(15)01428-1.
  7. Cook NL, Moeke CH, Fantoni LI, Pattison DI, Davies MJ. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues. Free Radic Biol Med. 2015 Nov 23. pii: S0891-5849(15)01123-5. doi: 10.1016/ j.freeradbiomed.2015.11.025. [Epub ahead of print] PubMed PMID: 26616646.
  8. Luanpitpong S, Chanvorachote P, Stehlik C, Tse W, Callery PS, Wang L,Rojanasakul Y. Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Biol Cell. 2013 Mar;24(6):858-69. View Article
  9. Nolin JD, Tully JE, Hoffman SM, Guala AS, van der Velden JL, Poynter ME, van der Vliet A, Anathy V, Janssen-Heininger YM. The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κB family proteins. Free Radic Biol Med. 2014 Aug;73:143-53. View Article
  10. Hou JK, Huang Y, He W, Yan ZW, Fan L, Liu MH, Xiao WL, Sun HD, Chen GQ. Adenanthin targets peroxiredoxin I/II to kill hepatocellular carcinoma cells. Cell Death Dis. 2014 Sep 4;5:e1400. View Article
  11. Shen SM, Guo M, Xiong Z, Yu Y, Zhao XY, Zhang FF, Chen GQ. AIF inhibits tumor metastasis by protecting PTEN from oxidation. EMBO Rep. 2015 Nov;16(11):1563-80. doi: 10.15252/embr.201540536. Epub 2015 Sep 28. View Article
  12. Hourihan JM, Moronetti Mazzeo LE, Fernández-Cárdenas LP, Blackwell TK.Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 AntioxidantResponse. Mol Cell. 2016 Aug 18;63(4):553-66. View Article
  13. Heppner DE, Hristova M, Dustin CM, Danyal K, Habibovic A, van der Vliet A. TheNADPH oxidases DUOX1 and NOX2 Play Distinct Roles in Redox Regulation ofEpidermal Growth Factor Receptor Signaling. J Biol Chem. 2016 Sep 20. pii:jbc.M116.749028. View Article
  14. Pan L, Zhu B, Hao W, Zeng X, Vlahopoulos SA, Hazra TK, Hegde ML, Radak Z, Bacsi A, Brasier AR, Ba X, Boldogh I. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression. J Biol Chem. 2016 Dec 2;291(49):25553-25566. PubMed PMID: 27756845; PubMed Central PMCID: PMC5207254.View Article
  15. Kenche H, Ye ZW, Vedagiri K, Richards DM, Gao XH, Tew KD, Townsend DM, Blumental-Perry A. Adverse Outcomes Associated with Cigarette Smoke Radicals Related to Damage to Protein-disulfide Isomerase. J Biol Chem. 2016 Feb 26;291(9):4763-78. doi: 10.1074/jbc.M115.712331. PubMed PMID: 26728460; PubMed Central PMCID: PMC4813498.View Article
  16. Habibovic A, Hristova M, Heppner DE, Danyal K, Ather JL, Janssen-Heininger YM, Irvin CG, Poynter ME, Lundblad LK, Dixon AE, Geiszt M, van der Vliet A. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma.JCI Insight. 2016 Nov 3;1(18):e88811. View Article
  17. DOI: 10.1007/978-3-319-06710-0_7 In book: Nitric Oxide in Plants: Metabolism and Role in Stress Physiology, Edition: http://link.springer.com/chapter/10.1007%2F978-3-319-06710-0_7, Chapter: Nitric oxide synthesis, detection methods and possible roles during jasmonate-regulated stress response., Publisher: Springer International, Switzerland, Editors: Khan N., Mobin M., Mohammad F., Corpas F.J., pp.127-138 View Article
  18. Wood ST, Long DL, Reisz JA, Yammani RR, Burke EA, Klomsiri C, Poole LB, Furdui CM, Loeser RF. Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments. Arthritis Rheumatol. 2016 Jan;68(1):117-26. doi: 10.1002/art.39326. PubMed PMID: 26314228; PubMed Central PMCID: PMC4849859. View Article
  19. Ba X, Bacsi A, Luo J, Aguilera-Aguirre L, Zeng X, Radak Z, Brasier AR, Boldogh I. 8-oxoguanine DNA glycosylase-1 augments proinflammatory gene expression by facilitating the recruitment of site-specific transcription factors. J Immunol. 2014 Mar 1;192(5):2384-94. View Article
  20. Heppner DE, Hristova M, Ida T, Mijuskovic A, Dustin CM, Bogdándi V, Fukuto JM, Dick TP, Nagy P, Li J, Akaike T, van der Vliet A. Cysteine perthiosulfenic acid (Cys-SSOH): A novel intermediate in thiol-based redox signaling? Redox Biol. 2017 Oct 9;14:379-385. View Article
  21. Yang X, Wu J, Jing S, Forster MJ, Yan LJ. Mitochondrial protein sulfenation during aging in the rat brain. Biophys Rep. 2018;4(2):104-113. View Article
  22. Nagar S, Noveral SM, Trudler D, Lopez KM, McKercher SR, Han X, Yates JR 3rd, Piña-Crespo JC, Nakanishi N, Satoh T, Okamoto SI, Lipton SA. MEF2D haploinsufficiency downregulates the NRF2 pathway and renders photoreceptors susceptible to light-induced oxidative stress. Proc Natl Acad Sci U S A. 2017 May 16;114(20):E4048-E4056. View Article
  23. Little AC, Hristova M, van Lith L, Schiffers C, Dustin CM, Habibovic A, Danyal K, Heppner DE, Lin MJ, van der Velden J, Janssen-Heininger YM, van der Vliet A. Dysregulated Redox Regulation Contributes to Nuclear EGFR Localization and Pathogenicity in Lung Cancer. Sci Rep. 2019 Mar 19;9(1):4844. View Article
  24. Heppner DE, Dustin CM, Liao C, Hristova M, Veith C, Little AC, Ahlers BA, White SL, Deng B, Lam YW, Li J, van der Vliet A. Direct cysteine sulfenylation drives activation of the Src kinase. Nat Commun. 2018 Oct 30;9(1):4522. View Article
  25. El Hage A, Tollervey D. Krämer AC, Torreggiani A, Davies MJ. Effect of Oxidation and Protein Unfolding on Cross-Linking of β-Lactoglobulin and α-Lactalbumin. J Agric Food Chem. 2017 Nov 29;65(47):10258-10269. View Article
  26. Dustin CM, Hristova M, Schiffers C, van der Vliet A. Proteomic Methods to Evaluate NOX-Mediated Redox Signaling. Methods Mol Biol. 2019;1982:497-515. View Article
  27. Hao W, Wang J, Zhang Y, et al. Enzymatically inactive OGG1 binds to DNA and steers base excision repair toward gene transcription. FASEB J. 2020;34(6):7427-7441. View Article
  28. Love DT, Guo C, Nikelshparg EI, Brazhe NA, Sosnovtseva O, Hawkins CL. The role of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) in the induction of mitochondrial dysfunction in macrophages [published online ahead of print, 2020 Jun 10]. Redox Biol. 2020;36:101602. View article
  29. Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, Petrovic D, Miljkovic JL, Thomas-Lopez D, Jung Y, Miler M, Mitchell S, Milosevic V, Gomes JE, Benhar M, Gonzalez-Zorn B, Ivanovic-Burmazovic I, Torregrossa R, Mitchell JR, Whiteman M, Schwarz G, Snyder SH, Paul BD, Carroll KS, Filipovic MR. Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metab. 2019 Dec 3;30(6):1152-1170.e13. View article
  30. Lee HY, Kim HK, Hoang TH, Yang S, Kim HR, Chae HJ. The correlation of IRE1α oxidation with Nox4 activation in aging-associated vascular dysfunction. Redox Biol. 2020 Sep 14;37:101727. View article
  31. Kim HK, Lee HY, Riaz TA, Bhattarai KR, Chaudhary M, Ahn JH, Jeong J, Kim HR, Chae HJ. Chalcone suppresses tumor growth through NOX4-IRE1α sulfonation-RIDD-miR-23b axis. Redox Biol. 2021 Jan 6;40:101853. View article 

If you publish research with this product, please let us know so we can cite your paper.