Bryostatin 1

Bryostatin 1 is one of a series of cyclic macrolides isolated from the marine bryozoan Bugula neritina (Order Cheilostomata), and a potent modulator of Protein Kinase C (PKC).

Bryostatin 1 has undergone several Phase I and Phase II clinical trials against melanomas, lymphomas and renal cancers by the National Cancer Institute in the United States and by the Cancer Research Campaign in Great Britain. In vitro studies have shown that Bryostatin 1 is a potent antileukemic agent that works by a unique and unusual mechanism. This compound exhibits selective activity against leukemias and directly stimulates bone marrow progenitor cells to form colonies that functionally activate neutrophils. This combined activity is unusual because most cytotoxic anticancer agents are toxic to bone marrow. The mechanism of activity is unknown but it may be related to the ability of the bryostatins to modulate the protein kinase C receptor.

Catalog Number Product DataSheet Size AVAILABILITY Price Qty
Bryostatin 1, 10ug
10ug 1-2 weeks
Regular Price:$180.00
On Sale:
Bryostatin 1, 50ug
50ug 1-2 weeks
Regular Price:$515.00
On Sale:

Product Type: Small Molecule
Chemical Formula: C47H68O17
CAS number: 83314-01-6
Molecular Weight: 905
Format: White crystalline solid
Purity: >99 % determined by HPLC
Solubility: Soluble in methanol and ethanol
Stability: Stable as a solid over extended period at -20C.
Storage: -20C, avoid exposure to oxygen and direct sunlight
Shipped: Cold Pack


Bryostatin 1 HPLC Chromatogram.

Purification Notes: Purified using near-critical and supercritical fluids as an alternate to conventional organic solvents during a sequence of phase extraction and chromatographic purification steps.

  1. Alkon D, Epstein H, Kuzirian A, Bennett M and Nelson T. (2005). Protein synthesis required for long-term memory is induced by PKC activation on days before associative learning. Proc Natl Acad Sci USA. 102:16432-16437.
  2. Boto W, Brown L, Chrest J and Adler W. (1991). Distinct modulatory effects of bryostatin 1 and staurosporine on the biosynthesis and expression of the HIV receptor protein (CD4) by T cells. Cell Regul. 2, 95-103.
  3. Castor T. (1995,1997). Method and Apparatus for Extracting Taxol from Source Materials. US Patent No. 5,440,055 and European Patent No. 689,537.
  4. Castor T. (1998). Method and Apparatus for Isolating Therapeutic Compositions from Source Materials. US Patent No. 5,750,709.
  5. Castor T. (2001). Supercritical Fluid Isolation of Bryostatin 1. SBIR Phase II Final Report. SBIR Grant No. 5 R44 CA 64017-03.
  6. Clamp A and Jayson G. (2002). The clinical development of the bryostatins. Anticancer Drugs. Aug;13(7):673-83.
  7. Davidson S, Allen S, Lim G, Anderson C and Haygood M. (2001). Evidence for the Biosynthesis of Bryostatins by the Bacterial Symbiont "Candidatus Endobugula sertula" of the Bryozoan Bugula neritina. Appl. Environ. Microbiol. 67, 4531-4537.
  8. Do Y, Hegde V, Nagarkatti P and Nagarkatti M. (2004). Bryostatin 1 enhances the maturation and antigen-presenting ability of murine and human dendritic cells. Cancer Res. 64, 6756-6765.
  9. Etcheberrigaray R, Tan M, Dewachter I, Kuipéri C, Van der Auwera I, Wera S, Qiao L, Bank B, Nelson T, Kozikowski A, Van Leuven F and Alkon D. (2004). Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice. Proc Natl Acad Sci USA. 101:11141-11146.
  10. Favit A, Grimaldi T, Nelson T and Alkon D. (1998). Alzheimer's-specific effects of soluble b-amyloid on protein kinase C-a and -g degradation in human fibroblasts. Proc Natl Acad Sci USA. 95, 5562–5567.
  11. Hennings H, Blumberg P, Pettit G, Herald C, Shores R and Yuspa S. (1987). Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin. Carcinogenesis. 8:1343–1346.
  12. Mutter R and Wills M. (2000). Chemistry and clinical biology of the bryostatins. Bioorg Med Chem. 8:1841–1860.
  13. Newman D. (1995). Bryostatin: From Bryozoan to Cancer Drug. Presented at the 10th International Bryozoan Meeting, New Zealand.
  14. Olds J and Alkon D. (1993). Protein kinase C: a nexus in the biochemical events that underlie associative learning. Acta Neurobiol. Exp. 53, 197–207.
  15. Pagliaro L, Daliani D, Amato R, Tu S, Jones D, Smith T, Logothetis C and Millikan R. (2000). A Phase II Trial of Bryostatin 1 for Patients with Metastatic Renal Cell Carcinoma. Cancer. Vol. 89, No. 3, 615-618.
  16. Pérez, M, de Vinuesa A, Sanchez-Duffhues G, Marquez M, Bellido M, Muñoz-Fernandez M, Moreno S, Castor T, Calzado M and Muñoz E. (2010). Bryostatin 1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency. Curr HIV Res. 8(6):418-29.
  17. Pettit G, Herald C, Doubek D, Herald D, Arnold E and Clardy J. (1982). Isolation and structure of Bryostatin 1. J. Am. Chem. Soc. 104, 6846–6848.
  18. Philip P, Rea D, Thavasu P, Carmichael J, Stuart N, Rockett H, Talbot D, Ganesan T, Pettit G, Balkwill F and Harris A. (1993) Phase I Study of Bryostatin 1: Assessment of Interleukin 6 and Tumor Necrosis Factor ? Induction In Vivo. Journal of the National Cancer Institute. Vol. 85, No. 22.
  19. Philip P and Zonder J. (1999). Pharmacology and clinical experience with Bryostatin 1: a novel anticancer drug. Expert Opin Investig Drugs. 8:2189–2199.
  20. Prendiville J, Crowther D, Thatcher N, Woll P, Fox B, McGown A, Testa N, Stern P, McDermott R, Potter M and Pettit G. (1993). A Phase I Study of Intravenous Bryostatin 1 in Patients with Advanced Cancer. British Journal of Cancer. 68, 418-424.
  21. Qatsha K, Rudolph C, Marmé D, Schächtele C and May W. (1993). Go 6976, a selective inhibitor of protein kinase C, is a potent antagonist of human immunodeficiency virus 1 induction from latent/low-level- producing reservoir cells in vitro. Proc Natl Acad Sci USA. 90, 4674-4678.
  22. Schaufelberger D, Koleck M, Beutler J, Vatakis A, Alvarado A, Andrews P, Marzo L, Muschik G, Roach J, Ross J, Lebherz W, Reeves M, Eberwein R, Rodgers L, Testerman R, Snader K and Forenza S. (1991). The large scale isolation of Bryostatin 1 from Bugula neritina following good manufacturing practices. Journal of Natural Products. 54, 1265-1270.
  23. Suffness M, Newman D and Snader K. (1989). Discovery and Development of Antineoplastic Agents from Natural Sources. Bioorganic Marine Chemistry, Volume 3, Springer-Verlag, Berlin, pp 131-168.
  24. Trenn G, Pettit G, Takayama H, Hu-Li J, Sitkovsky M. (1998). Immunomodulating properties of a novel series of protein kinase C activators. The bryostatins. J. Immunol. 140: 433-9.
  25. Varterasian M, Mohammad R, Shurafa M, Hulburd K, Pemberton P, Rodriguez D, Spadoni V, Eilender D, Murgo A, Wall N, Dan M and Al-Katib A. (2000). Phase II Trial of Bryostatin 1 in Patients with Relapsed Low-Grade Non-Hodgkin's Lymphoma and Chronic Lymphocytic Leukemia. Clin Cancer Res. 6:825–828.
  26. Vlach J and Pitha P. (1992). Activation of human immunodeficiency virus type 1 provirus in T-cells and macrophages is associated with induction of inducer-specific NF-kappa B binding proteins. Virology. 187, 63- 72.

If you publish research with this product, please let us know so we can cite your paper.