Anti-Puromycin [3RH11] Antibody

This monoclonal antibody to puromycin provides a non-radioactive method to measure rates of global protein synthesis (mRNA translation) in cells or tissue slices incubated with puromycin, or animals treated with puromycin in vivo.

Highlights:

  • Allows for the simple evaluation and quantification of translation directly using standard immunochemical methods
  • Advantageous alternative to traditional pulse-chase methods, which rely on radioactive amino acid labeling
  • Compatible with Western Blot and ELISA applications

Puromycin is an aminonucleoside antibiotic, derived from the Streptomyces alboniger bacterium, that causes premature chain termination during translation taking place in the ribosome. Part of the molecule resembles the 3' end of the aminoacylated tRNA, making it useful for protein translation analysis.

Classical pulse-chase or flooding dose methods used to monitor protein synthesis rely on the measurement of radioactive methionine and cysteine labels. Analysis using puromycin immunodetection is an advantageous alternative to radioactive amino acid labeling, and allows for the evaluation/quantification of translation directly using standard immunochemical methods.

From the laboratory of Scot R. Kimball, PhD, Penn State College of Medicine

Read related blog post, Puromycin Incorporation as a Measure of Global Protein Synthesis »

The Investigator's Annexe Part of The Investigator's Annexe program.

Catalog Number Product Size AVAILABILITY Price Qty
EQ0001
Anti-Puromycin [3RH11] Antibody, 100ug
100ug In stock
Price: $219.00
EQ0005
Anti-Puromycin [3RH11] Antibody, 500ug
5x100ug In stock
Price: $900.00
Specifications
Name: Anti-Puromycin (3RH11)
Isotype: IgG1 kappa
Clonality: Monoclonal
Clone Name: 3RH11
Specificity: This antibody recognizes puromycin.
Immunogen: puromycin hydrochloride
Host: Mouse
Format: Liquid
Buffer: PBS
Tested Applications: Western blotting (1:1,000), ELISA and Immunofluorescence microscopy.
Purity: Protein G purified
Storage: Store at 4C
Shipped: Cold packs
Data
(A) C2C12 myoblasts were starved of serum and leucine for 2 hr and then IGF-1 and leucine were added to the medium of some of the cells for 45 min. Puromycin (1uM) was added to the medium of some of the cells (lanes 3-6) 30 min before harvest. (B) Quantification of western blot analysis from panel A. (C) In the same study, but in a separate set of culture dishes, cells were incubated with [35S]methionine instead of puromycin and incorporation was measured.

Provider

Scot R. Kimball, PhD

Scot R. Kimball, PhD
Penn State College of Medicine

Comments

Puromycin inhibits protein synthesis, which some cells may be more or less sensitive to. It is therefore highly recommended that the concentration of puromycin for protein translation assays be optimized for cell type.  The suggested concentration of puromycin is 1uM, but for cells that are more sensitive, lower concentrations of puromycin may give better results.

Because cell growth (and protein synthesis) slows dramatically as cell near confluence, it is recommended that experiments are performed during growth phase (40-50% confluence). Label with an optimized concentration of puromycin for at least 20-30 min.

References
  1. Mirzoev T, Tyganov S, Vilchinskaya N, Lomonosova Y, Shenkman B. Key Markers ofmTORC1-Dependent and mTORC1-Independent Signaling Pathways Regulating ProteinSynthesis in Rat Soleus Muscle During Early Stages of Hindlimb Unloading. CellPhysiol Biochem. 2016 Aug 19;39(3):1011-1020. View Article
  2. Wang Y, Krais JJ, Bernhardy AJ, Nicolas E, Cai KQ, Harrell MI, Kim HH, George E, Swisher EM, Simpkins F, Johnson N. RING domain-deficient BRCA1 promotes PARPinhibitor and platinum resistance. J Clin Invest. 2016 Aug 1;126(8):3145-57. View Article
  3. Suzuki Y, Chin WX, Han Q, Ichiyama K, Lee CH, Eyo ZW, Ebina H, Takahashi H,Takahashi C, Tan BH, Hishiki T, Ohba K, Matsuyama T, Koyanagi Y, Tan YJ, SawasakiT, Chu JJ, Vasudevan SG, Sano K, Yamamoto N. Characterization of RyDEN (C19orf66)as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication. PLoS Pathog. 2016 Jan 6;12(1):e1005357. View Article
  4. Wang XJ, Yang X, Wang RX, Jiao HC, Zhao JP, Song ZG, Lin H. Leucine alleviatesdexamethasone-induced suppression of muscle protein synthesis via synergyinvolvement of mTOR and AMPK pathways. Biosci Rep. 2016 Jun 17;36(3). pii:e00346. View Article
  5. Wang R, Jiao H, Zhao J, Wang X, Lin H. Glucocorticoids Enhance MuscleProteolysis through a Myostatin-Dependent Pathway at the Early Stage. PLoS One.2016 May 26;11(5):e0156225. View Article
  6. Kainulainen M, Lau S, Samuel CE, Hornung V, Weber F. NSs virulence factor ofRift Valley fever virus engages the F-box proteins FBXW11 and ?-TRCP1 to degrade the antiviral protein kinase PKR. J Virol. 2016 Apr 27. pii: JVI.00016-16. View Article
  7. Vu?i?evi? D, Gehre M, Dhamija S, Friis-Hansen L, Meierhofer D, Sauer S, Ørom UA. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation. Oncotarget. 2016 Apr 5. View Article
  8. Ueki N, Wang W, Swenson C, McNaughton C, Sampson NS, Hayman MJ. Synthesis and Preclinical Evaluation of a Highly Improved Anticancer Prodrug Activated by Histone Deacetylases and Cathepsin L. Theranostics 2016; 6(6):808-816. doi:10.7150/thno.13826. View Article
  9. J.J. David Ho, Miling Wang, Timothy E. Audas, Deukwoo Kwon, Steven K. Carlsson, Sara Timpano, Sonia L. Evagelou, Shaun Brothers, Mark L. Gonzalgo, Jonathan R. Krieger, Steven Chen, James Uniacke, Stephen Lee. Systemic Reprogramming of Translation Efficiencies on Oxygen Stimulus. Cell Reports. DOI: http://dx.doi.org/10.1016/j.celrep.2016.01.036. View Article
  10. Khoutorsky A, Bonin RP, Sorge RE, Gkogkas CG, Pawlowski SA, Jafarnejad SM, Pitcher MH, Alain T, Perez-Sanchez J, Salter EW, Martin L, Ribeiro-da-Silva A, De Koninck Y, Cervero F, Mogil JS, Sonenberg N. Translational control of nociception via 4E-binding protein 1. Elife. 2015 Dec 18;4. View Article
  11. Di Salvio M, Piccinni V, Gerbino V, Mantoni F, Camerini S, Lenzi J, Rosa A, Chellini L, Loreni F, Carrì MT, Bozzoni I, Cozzolino M, Cestra G. Pur-alpha functionally interacts with FUS carrying ALS-associated mutations. Cell Death Dis. 2015 Oct 22;6:e1943. View Article
  12. Steiner JL, Gordon BS, Lang CH. Moderate alcohol consumption does not impair overload-induced muscle hypertrophy and protein synthesis. Physiol Rep. 2015 Mar;3(3). pii: e12333. doi: 10.14814/phy2.12333. View Article
  13. Zhang Q, Joshi SK, Lovett DH, Zhang B, Bodine S, Kim HT, Liu X. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy. Muscles Ligaments Tendons J. 2015 Feb 5;4(4):446-54. View Article
  14. Hayasaka M, Tsunekawa H, Yoshinaga M, Murakami T. Endurance exercise induces REDD1 expression and transiently decreases mTORC1 signaling in rat skeletal muscle. Physiol Rep. 2014 Dec 24;2(12). pii: e12254. doi: 10.14814/phy2.12254. View Article
  15. Kelleher AR, Kimball, SR, Dennis MD, Schilder RJ and Jefferson LS. The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb. Am J Physiol Endocrinol Metab. 304(2):E229-236. 2013.
  16. Yasuda K, Zhang H, Loiselle D, Haystead T, Macara IG, Mili S. The RNA-binding protein Fus directs translation of localized mRNAs in APC-RNP granules. J Cell Biol. 2013 Dec 9;203(5):737-46.
  17. Dai N, Christiansen J, Nielsen FC, Avruch J. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev. 2013 Feb 1;27(3):301-12.
  18. Belozerov VE, Ratkovic S, McNeill H, Hilliker AJ, McDermott JC. In vivo interaction proteomics reveal a novel p38MAPK/Rack1 pathway regulating proteostasis in Drosophila muscle. Mol Cell Biol. 2013 Nov 25.
  19. Ueki N, Lee S, Sampson NS, Hayman MJ. Selective cancer targeting with prodrugs activated by histone deacetylases and a tumour-associated protease. Nat Commun. 2013;4:2735.
  20. Ha SW, Ju D, Xie Y. Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation. J Biol Chem. 2013 Dec 12.
  21. Naydenov NG, Baranwal S, Khan S, Feygin A, Gupta P, Ivanov AI. Novel mechanism of cytokine-induced disruption of epithelial barriers Janus kinase and protein kinase D-dependent downregulation of junction protein expression. Tissue Barriers 1:4, e25231.
  22. Park YS, Liu Z, Vasamsetti BM, Cho NJ. The ERK1/2 and mTORC1 Signaling Pathways Are Involved in the Muscarinic Acetylcholine Receptor-Mediated Proliferation of SNU-407 Colon Cancer Cells. J Cell Biochem. 2016 Dec;117(12):2854-2863. doi: 10.1002/jcb.25597. PubMed PMID: 27167250. View Article
  23. Crowell KT, Steiner JL, Coleman CS, Lang CH. Decreased Whole-Body Fat Mass Produced by Chronic Alcohol Consumption is Associated with Activation of S6K1-Mediated Protein Synthesis and Increased Autophagy in Epididymal White Adipose Tissue. Alcohol Clin Exp Res. 2016 Sep;40(9):1832-45. doi: 10.1111/acer.13159. PubMed PMID: 27464336; PubMed Central PMCID: PMC5009010. View Article
  24. Spangler B, Morgan CW, Fontaine SD, Vander Wal MN, Chang CJ, Wells JA, Renslo AR. A reactivity-based probe of the intracellular labile ferrous iron pool. Nat Chem Biol. 2016 Sep;12(9):680-5. doi: 10.1038/nchembio.2116. PubMed PMID: 27376690; PubMed Central PMCID: PMC4990480. View Article
  25. Steiner JL, Fukuda DH, Rossetti ML, Hoffman JR, Gordon BS. Castration Alters Protein Balance Following High Frequency Muscle Contraction. J Appl Physiol (1985). 2016 Dec 1:jap.00740.2016. doi: 10.1152/japplphysiol.00740.2016. [Epub ahead of print] PubMed PMID: 27909227. View Article
  26. Reid DW, Tay AS, Sundaram JR, Lee IC, Chen Q, George SE, Nicchitta CV, Shenolikar S. Complementary Roles of GADD34- and CReP-Containing Eukaryotic Initiation Factor 2α Phosphatases during the Unfolded Protein Response. Mol Cell Biol. 2016 Jun 15;36(13):1868-80. doi: 10.1128/MCB.00190-16. PubMed PMID: 27161320; PubMed Central PMCID: PMC4911741. View Article
  27. Stretton C, Hoffmann TM, Munson MJ, Prescott A, Taylor PM, Ganley IG, Hundal HS. GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling. Biochem J. 2015 Sep 1;470(2):207-21. doi: 10.1042/BJ20150404. PubMed PMID: 26348909; PubMed Central PMCID: PMC4652938. View Article
  28. Fay A, Glickman MS. An essential nonredundant role for mycobacterial DnaK in native protein folding. PLoS Genet. 2014 Jul 24;10(7):e1004516. doi: 10.1371/journal.pgen.1004516. PubMed PMID: 25058675; PubMed Central PMCID: PMC4109909. View Article
  29. Cattin ME, Wang J, Weldrick JJ, Roeske CL, Mak E, Thorn SL, DaSilva JN, Wang Y, Lusis AJ, Burgon PG. Deletion of MLIP (muscle-enriched A-type lamin-interacting protein) leads to cardiac hyperactivation of Akt/mammalian target of rapamycin (mTOR) and impaired cardiac adaptation. J Biol Chem. 2015 Oct 30;290(44):26699-714. doi: 10.1074/jbc.M115.678433. PubMed PMID: 26359501; PubMed Central PMCID: PMC4646324. (supplemental info) View Article
  30. Pirinen E, Cantó C, Jo YS, Morato L, Zhang H, Menzies KJ, Williams EG, Mouchiroud L, Moullan N, Hagberg C, Li W, Timmers S, Imhof R, Verbeek J, Pujol A, van Loon B, Viscomi C, Zeviani M, Schrauwen P, Sauve AA, Schoonjans K, Auwerx J. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 2014 Jun 3;19(6):1034-41. doi: 10.1016/j.cmet.2014.04.002. PubMed PMID: 24814482; PubMed Central PMCID: PMC4047186. View Article
  31. Lu Y, Liang FX, Wang X. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol Cell. 2014 Sep 4;55(5):758-70. doi: 10.1016/j.molcel.2014.06.032. PubMed PMID: 25087875; PubMed Central PMCID: PMC4156904. View Article
  32. Lin F, Marcelo KL, Rajapakshe K, Coarfa C, Dean A, Wilganowski N, Robinson H, Sevick E, Bissig KD, Goldie LC, Means AR, York B. The camKK2/camKIV relay is an essential regulator of hepatic cancer. Hepatology. 2015 Aug;62(2):505-20. doi: 10.1002/hep.27832. PubMed PMID: 25847065; PubMed Central PMCID: PMC4515151. View Article
  33. Watson A, Lipina C, McArdle HJ, Taylor PM, Hundal HS. Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1. Cell Signal. 2016 May;28(5):412-24. doi: 10.1016/j.cellsig.2016.01.014. PubMed PMID: 26827808; PubMed Central PMCID: PMC4804389. View Article
  34. Shiina N, Nakayama K. RNA granule assembly and disassembly modulated by nuclear factor associated with double-stranded RNA 2 and nuclear factor 45. J Biol Chem. 2014 Jul 25;289(30):21163-80. PubMed PMID: 24920670; PubMed Central PMCID: PMC4110319. View Article
  35. Ogasawara R, Sato K, Matsutani K, Nakazato K, Fujita S. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2014 May 15;306(10):E1155-62. doi: 10.1152/ajpendo.00647.2013. PubMed PMID: 24691029. View Article
  36. Stretton C, Hoffmann TM, Munson MJ, Prescott A, Taylor PM, Ganley IG, Hundal HS. GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling. Biochem J. 2015 Sep 1;470(2):207-21. doi: 10.1042/BJ20150404. PubMed PMID: 26348909; PubMed Central PMCID: PMC4652938. View Article
  37. Crowell KT, Soybel DI, Lang CH. Inability to replete white adipose tissue during recovery phase of sepsis is associated with increased autophagy, apoptosis, and proteasome activity. Am J Physiol Regul Integr Comp Physiol. 2017 Mar 1;312(3):R388-R399. doi: 10.1152/ajpregu.00498.2016. PubMed PMID: 28100477. View Article
  38. Sethna F, Feng W, Ding Q, Robison AJ, Feng Y, Wang H. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model. Nat Commun. 2017 Feb 20;8:14359. doi: 10.1038/ncomms14359. PubMed PMID: 28218269; PubMed Central PMCID: PMC5321753. View Article
  39. Dwyer JM, Maldonado-Avilés JG, Lepack AE, DiLeone RJ, Duman RS. Ribosomal protein S6 kinase 1 signaling in prefrontal cortex controls depressive behavior. Proc Natl Acad Sci U S A. 2015 May 12;112(19):6188-93. doi: 10.1073/pnas.1505289112. Epub 2015 Apr 27. PubMed PMID: 25918363; PubMed Central PMCID: PMC4434715. View Article
  40. Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A, Güttler T, Davis F, Asara JM, Sahin M. The Circadian Protein BMAL1 Regulates Translation in Response to S6K1-Mediated Phosphorylation. Cell. 2015 May 21;161(5):1138-51. doi: 10.1016/j.cell.2015.04.002. Epub 2015 May 14. PubMed PMID: 25981667; PubMed Central PMCID: PMC4447213 View Article
  41. Lee CS, Hanna AD, Wang H, Dagnino-Acosta A, Joshi AD, Knoblauch M, Xia Y, Georgiou DK, Xu J, Long C, Amano H, Reynolds C, Dong K, Martin JC, Lagor WR, Rodney GG, Sahin E, Sewry C, Hamilton SL. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017 Mar 24;8:14659. View Article
  42. McLean KJ, Jacobs-Lorena M. Plasmodium falciparum Maf1 Confers Survival upon Amino Acid Starvation. MBio. 2017 Mar 28;8(2). pii: e02317-16. View Article
  43. Irena Vlatkovic, Sivakumar Sambandan, Georgi Tushev, Mantian Wang, Irina Epstein, Caspar Glock, Nicole Fuerst, Ivan Cajigas, Erin Schuman. Poly(A) Binding Protein Nuclear 1 regulates the polyadenylation of key synaptic plasticity genes and plays a role in homeostatic plasticity. bioRxiv. doi: https://doi.org/10.1101/121194 View Article
  44. Lisa Deliu, Abhishek Ghosh, Savraj Grewal. Investigation Of Protein Synthesis In Drosophila Larvae Using Puromycin Labelling. bioRxiv. doi: https://doi.org/10.1101/127837View Article

If you publish research with this product, please let us know so we can cite your paper.

 
Loading...
Loading...