Pseudotyped ΔG-luciferase (G*ΔG-luciferase) rVSV

ΔG-luciferase is a replication-restricted, recombinant vesicular stomatitis virus (rVSV) that can be used to produce pseudotype viruses containing the envelope glycoproteins from a wide variety of heterologous viruses, including those that require BSL-3 or BSL-4 biocontainment; however, because the infectivity of rVSV-ΔG pseudotypes is restricted to a single round of replication, the pseudotypes can be handled using BSL-2 containment practices. These properties, together with the rapid replication kinetics of rVSV-ΔG pseudotypes, have proven useful in studies designed to identify cellular receptors for numerous viruses, and they also provide a robust platform to screen libraries for entry inhibitors and to evaluate the neutralizing antibody responses following vaccination [1].

When ordering this reagent, a vial of VSV-G pseudotyped ΔG-luciferase (G*ΔG-luciferase) will be sent which can directly be used to generate pseudotypes containing your envelope protein of choice by following the procedures described in [1]. Infection of cells with G*ΔG-luciferase results in detectable luciferase activity within 2-3 hours of infection, which increases rapidly over the next 4-8 hrs post-infection. Infectivity needs to be normalized to luciferase activity for each cell line used. Absolute infectivity can be quantified by indirect immunofluorescence microscopy or flow cytometry using antibody to the VSV matrix (M) protein, the VSV nucleocapsid (N) protein, or luciferase. Because G*ΔG-luciferase undergoes a single-round of infection, each M, N, or luciferase-positive cell represents one infectious unit of virus. It is recommended that the user also order the plasmid pCAGGS-G, which is used to generate additional working stocks of G*ΔG-luciferase.

It is the responsibility of the principal investigator to seek Institutional Biosafety Safety Committee approval for recombinant DNA, transgenic animal or infectious agent use within their laboratory spaces and maintain an Institutional Biosafety Safety Committee approval during the time period these materials are used.

From the laboratory of Michael A. Whitt, Ph.D., University of Tennessee.

The Investigator's Annexe Part of The Investigator's Annexe program.

Catalog Number Product DataSheet Size AVAILABILITY Price Qty
EH1020-PM
Pseudotyped ΔG-luciferase (G*ΔG-luciferase) rVSV
300uL In stock
Regular Price:$1,120.00
On Sale:
EH1025-PM
Pseudotyped ΔG-luciferase (G*ΔG-luciferase) rVSVw/ pCAGGS-G-Kan
300uL; w/ pCAGGS-G-Kan In stock
Regular Price:$1,240.00
On Sale:

REQUIREMENTS

US customers - The USDA APHIS VS 16-6 or 16-6A permit must be obtained and a copy of the permit must be sent to Kerafast here, in advance of shipment. The Application Form VS 16-3 (Import controlled material import or transport organisms or vectors) must be submitted to USDA APHIS Veterinary Services to obtain the VS 16-6 or 16-6A permit.

Non-US customers - A BIS permit will be required in order to ship this product. Purchase restricted to End Users only. Please Contact Us for more information

Specifications

Product Type: Virus
Biosafety Level: BSL-2
Vector Information: G*ΔG-luciferase was recovered using the VSV reverse genetics system as described in [1] from the plasmids pVSV-ΔG-luciferase, pBS-N-ΦT, pBS-P-ΦT, pBS-G-φT and pBS-L-ΦT. Following recovery, a plaque isolate (plaques can be obtained on cells transiently expressing VSV-G) was amplified on BHK-21 cells transfected with pCAGGS-G. Secondary working stocks were generated by infecting BHK-21 cells transfected with pCAGGS-G at low multiplicity (MOI = 0.1) and titered on BHK-21 cells.
Virus: VSV-G pseudotyped ΔG-luciferase (G*ΔG-luciferase)
Titer: ≥ 6x10e8 IU/mL
Serotype: Indiana/San Juan
Inoculation Conditions: To generate pseudotypes with heterologous envelope glycoproteins, cells (BHK-21 or HEK-293) are first transfected with a plasmid expressing the glycoprotein of choice and ~24 hrs later infected with G*ΔG-luciferase at a multiplicity (MOI) of ~3 to 5. To generate working stocks of G*ΔG-luciferase, cells that have been transfected with pCAGGS-G are infected with G*ΔG-luciferase at low multiplicity (MOI = 0.1) and culture supernatants harvested ~18-24 hrs post-infection.
Comments: For suggested protocol, see: Whitt, MA, J. Virol. Methods, 2010. 169(2): p. 365-74.
Storage: Store at -80C. Multiple freeze/thaw cycles not recommended.
Shipped: Frozen on Dry ice

Provider
From the laboratory of Michael A. Whitt, Ph.D., University of Tennessee.
Comments

Virus stocks are stable if stored frozen at -70 to -80C. Stocks should be frozen and thawed no more than 3 times without significant loss of infectivity. To produce additional working stocks of G*deltaG-luciferase, see Inoculations Conditions above.

References
  1. Whitt, M.A., Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J. Virol. Methods, 2010. 169(2): p. 365-74.
  2. Zhao X, Howell KA, He S, Brannan JM, Wec AZ, Davidson E, Turner HL, Chiang CI, Lei L, Fels JM, Vu H, Shulenin S, Turonis AN, Kuehne AI, Liu G, Ta M, Wang Y, Sundling C, Xiao Y, Spence JS, Doranz BJ, Holtsberg FW, Ward AB, Chandran K, Dye JM, Qiu X, Li Y, Aman MJ. Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell. 2017 May 18;169(5):891-904.e15. View Article
  3. Luchsinger LL, Ransegnola B, Jin D, et al. Serological Analysis of New York City COVID19 Convalescent Plasma Donors. Preprint. medRxiv. 2020;2020.06.08.20124792. Published 2020 Jun 9. View article
  4. Clausen TM, Sandoval DR, Spliid CB, et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Preprint. bioRxiv. 2020;2020.07.14.201616. Published 2020 Jul 14. View article
  5. Liu L, Wang P, Nair MS, et al. Potent Neutralizing Monoclonal Antibodies Directed to Multiple Epitopes on the SARS-CoV-2 Spike. Preprint. bioRxiv. 2020;2020.06.17.153486. Published 2020 Jun 18. View article 
  6. Luchsinger LL, Ransegnola B, Jin D, Muecksch F, Weisblum Y, Bao W, George PJ, Rodriguez M, Tricoche N, Schmidt F, Gao C, Jawahar S, Pal M, Schnall E, Zhang H, Strauss D, Yazdanbakhsh K, Hillyer CD, Bieniasz PD, Hatziioannou T. Serological Assays Estimate Highly Variable SARS-CoV-2 Neutralizing Antibody Activity in Recovered COVID19 Patients. J Clin Microbiol. 2020 Sep 11:JCM.02005-20. View article
  7. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, Zhao C, Zhang Q, Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Zhang L, Li X, Huang W, Wang Y. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell. 2020 Sep 3;182(5):1284-1294.e9. View article
  8. Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffré F, Zhang T, Kim TW, Harschnitz O, Redmond D, Houghton S, Liu C, Naji A, Ciceri G, Guttikonda S, Bram Y, Nguyen DT, Cioffi M, Chandar V, Hoagland DA, Huang Y, Xiang J, Wang H, Lyden D, Borczuk A, Chen HJ, Studer L, Pan FC, Ho DD, tenOever BR, Evans T, Schwartz RE, Chen S. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7.  View Article
  9. Wang P, Liu L, Nair MS, Yin MT, Luo Y, Wang Q, Yuan T, Mori K, Solis AG, Yamashita M, Garg A, Purpura LJ, Laracy JC, Yu J, Joshua-Tor L, Sodroski J, Huang Y, Ho DD. SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerg Microbes Infect. 2020 Dec;9(1):2091-2093.  View article
  10. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat Protoc. 2020 Nov;15(11):3699-3715.  View article 
  11. Martin-Sancho L, Lewinski MK, Pache L, Stoneham CA, Yin X, Pratt D, Churas C, Rosenthal SB, Liu S, De Jesus PD, O'Neill AM, Gounder AP, Nguyen C, Pu Y, Oom AL, Miorin L, Rodriguez-Frandsen A, Urbanowski M, Shaw ML, Chang MW, Benner C, Frieman MB, García-Sastre A, Ideker T, Hultquist JF, Guatelli J, Chanda SK. Functional Landscape of SARS-CoV-2 Cellular Restriction. bioRxiv [Preprint]. 2020 Sep 30:2020.09.29.319566. View article
  12. Yuan S, Yin X, Meng X, Chan J, Ye ZW, Riva L, Pache L, Chan CC, Lai PM, Chan C, Poon V, Matsunaga N, Pu Y, Yuen CK, Cao J, Liang R, Tang K, Sheng L, Du Y, Xu W, Sze KH, Zhang J, Chu H, Kok KH, To K, Jin DY, Sun R, Chanda S, Yuen KY. Clofazimine is a broad-spectrum coronavirus inhibitor that antagonizes SARS-CoV-2 replication in primary human cell culture and hamsters. Res Sq [Preprint]. 2020 Oct 7:rs.3.rs-86169. View article
  13. Han Y, Yang L, Duan X, Duan F, Nilsson-Payant BE, Yaron TM, Wang P, Tang X, Zhang T, Zhao Z, Bram Y, Redmond D, Houghton S, Nguyen D, Xu D, Wang X, Uhl S, Huang Y, Johnson JL, Xiang J, Wang H, Pan FC, Cantley LC, tenOever BR, Ho DD, Evans T, Schwartz RE, Chen HJ, Chen S. Identification of Candidate COVID-19 Therapeutics using hPSC-derived Lung Organoids. bioRxiv [Preprint]. 2020 May 5:2020.05.05.079095. View article 
  14. Brouillette RB, Maury W. Production of Filovirus Glycoprotein-Pseudotyped Vesicular Stomatitis Virus for Study of Filovirus Entry Mechanisms. Methods Mol Biol. 2017;1628:53-63.View article 
  15. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J, Kato Y, Crotty EG, Kim C, Rawlings SA, Mateus J, Tse LPV, Frazier A, Baric R, Peters B, Greenbaum J, Ollmann Saphire E, Smith DM, Sette A, Crotty S. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020 Nov 12;183(4):996-1012.e19. View article
  16. Galindo I, Garaigorta U, Lasala F, Cuesta-Geijo MA, Bueno P, Gil C, Delgado R, Gastaminza P, Alonso C. Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses. Antiviral Res. 2020 Nov 26:104990. View article
  17. Hashem AM, Algaissi A, Almahboub SA, Alfaleh MA, Abujamel TS, Alamri SS, Alluhaybi KA, Hobani HI, AlHarbi RH, Alsulaiman RM, ElAssouli MZ, Hala S, Alharbi NK, Alhabbab RY, AlSaieedi AA, Abdulaal WH, Bukhari A, Al-Somali AA, Alofi FS, Khogeer AA, Pain A, Alkayyal AA, Almontashiri NAM, Ahmad BM, Li X. Early Humoral Response Correlates with Disease Severity and Outcomes in COVID-19 Patients. Viruses. 2020 Dec 4;12(12):E1390. View article
  18. Zhou T, Tsybovsky Y, Olia AS, Gorman J, Rapp MA, Cerutti G, Chuang GY, Katsamba PS, Nazzari A, Sampson JM, Schon A, Wang PD, Bimela J, Shi W, Teng IT, Zhang B, Boyington JC, Sastry M, Stephens T, Stuckey J, Wang S, Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD. A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike. bioRxiv. 2020 Jul 4:2020.07.04.187989. View article
  19. Nguyen HT, Zhang S, Wang Q, Anang S, Wang J, Ding H, Kappes JC, Sodroski J. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J Virol. 2020 Dec 11:JVI.02304-20. View article
  20. Farzani TA, Chov A, Herschhorn A. A protocol for displaying viral envelope glycoproteins on the surface of vesicular stomatitis viruses. STAR Protoc. 2020 Dec 9;1(3):100209.  View article  
  21. Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J, Bahna F, Bimela J, Huang Y, Katsamba PS, Liu L, Nair MS, Rawi R, Olia AS, Wang P, Zhang B, Chuang GY, Ho DD, Sheng Z, Kwong PD, Shapiro L. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe. 2021 Mar 12:S1931-3128(21)00133-5. View article 
  22. Goc A, Niedzwiecki A, Rath M. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci Rep. 2021 Mar 4;11(1):5207.  View article 
  23. Thomson EC, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell. 2021 Mar 4;184(5):1171-1187.e20. View article 
  24. Starr TN, et al. Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape. bioRxiv [Preprint]. 2021 Apr 8:2021.04.06.438709. View article
  25. Wang P, Wang M, Yu J, Cerutti G, Nair MS, Huang Y, Kwong PD, Shapiro L, Ho DD. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. bioRxiv [Preprint]. 2021 Mar 2:2021.03.01.433466. View article 
  26. Bewley KR, Coombes NS, Gagnon L, McInroy L, Baker N, Shaik I, St-Jean JR, St-Amant N, Buttigieg KR, Humphries HE, Godwin KJ, Brunt E, Allen L, Leung S, Brown PJ, Penn EJ, Thomas K, Kulnis G, Hallis B, Carroll M, Funnell S, Charlton S. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nat Protoc. 2021 Apr 23. View article 

If you publish research with this product, please let us know so we can cite your paper.

Loading...